9. AUTOMORPHISMS

89.1 The Automorphism Group

An automorphism of a group G is an isomorphism
from G to G. We write the image of g under the
automorphism 0 as g® and multiply automorphisms by
defining g*® = (g*)P. Under this operation the set of all
automorphisms of G forms a group Aut(G).

The conjugate of g under h is h~*gh and we denote
it by g". Conjugation by an element of the group is an
automorphism, called an inner automorphism. Any
automorphism that is not an inner one is called an outer
automorphism. The inner automorphisms form a
subgroup of Aut(G), denoted by Inn(G).

Theorem 1: Inn(G) = G/Z(G).
Proof: For h € G, let 6, denote conjugation by h.
The map h — 6y is a homomorphism whose kernel is
Z(G). Hence, by the First isomorphism Theorem
Inn(G) = G/Z(G).

Theorem 2: Aut(Cy) = Zn* and Aut(C.) = C..
Proof: Ch = (A | AM.
If m is coprime to n then Q(m) = the automorphism x—x™
is an isomorphism between Zy* and Aut(Cp).

Aut(C.) = C; since the only automorphisms of the
infinite cyclic group are x — x and x — x%.
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Example 1: AUt(Cloo) = Zloo# =~ Cyo x Co.
|nn(C100) ~1.

Example 2: V4 ={a, B | a?, B% Ba = ap).

If A'is a—p, B—af and B is a—p, p—a then
Aut(V4) = (A, B| A3, B? BA =A"B).

Inn(V4) = VJIZ(V,) = 1.

Theorem 3: Suppose n > 3. Then Aut(D2n) = D2n and
InN(Dn) = Dan if nis odd and Cp x C, if nis even.
Proof: If A is a—a, B—af and B is ao—a™, B—p then
Aut(Dg) = (A, B| A", B2, BA = A'B) =~ D,
If n is even then Z(Dn) = (A" and

Inn(DZn) = D2n/<An> =~ V,.
If nis odd then Z(D2n) = 1 and Inn(D2n) = Dan.

Note that D, = C, and so Aut(D,) = 1 and
D,z C, x Cyand so Aut(Dy) = Ss.

Example 3: Aut(Ds) = Inn(Ds) = De.

Recall that S3 = Dg and so Aut(S3) = Ss. What about
the other symmetric groups? Clearly S; and S; = C; have
trivial automorphism groups. What about Sp in general. Is
Aut(Sn) = Sy for all n > 3?
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The curious answer is “in all but one case”. If n =

3, 4 or 5 then indeed Aut(Sp) = Sn. But Aut(Se) is twice as
big as Se itself.

Example 4: If G is the direct sum of n copies of Z,, where
p is prime, then Aut(G) = GL(n, p) because an
automorphism of G is a linear transformation when G is
viewed as a vector space over Zp.

Example 5: Aut(Qsg) = S,.
Solution: (based on a solution by Karen E. Smith from
the University of Michigan)
Qs =(A,B|A* B2= A2 BA=A"'B).
There are six elements of order 4:
A, A1 B,B™* ABand (AB)™.
Label the six sides of cube with these labels so that
elements and their inverses are on opposite faces.

An automorphism of Qg corresponds to a rotation
of the cube and so Aut(Qs) is isomorphic to the rotation
group of the cube, which is S,.

§9.2 Checking for Automorphisms
Suppose we have a finite group
G= <A, B, | Ri, Rz, >
Where the R;j are words in the generators.
Suppose we have a function 6 from the set of
generators to G. This can be extended to a map from G to
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G. We can check that 6 is an endomorphism by checking
that the images of the generators: A° B?, ... satisfy the
same relators as A, B, ... do in the presentation for G.
Finally to ensure that 6 is an automorphism we must
check that G° has the same order as G.

Example 6: Qs = (A, B| A% B2= A%, BAB = A™%).
Let A° =B and B = AB.
Now (A%* = B*.
(B%)? = (AB)? = ABAB = B2 = (A%?,
(B9 1ABY = (AB)'B(AB)

= (B'A'B)AB

=A’B=B1l= (Ae)—l

Now clearly the group generated by B and AB has

order 8, as does Qg so 6 induces an automorphism.

This last step is necessary because 6 might have
been merely an endomorphism. For example if we had
chosen A® = A2 and B® =A, then all the relators would be
satisfied by the corresponding images, yet the image of G
under 6 would have had order 4.
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89.3 Complete Groups
A group G is a complete group if:
Z(G) = 1 and Aut(G) = Inn(G).
By theorem 1, Aut(G) = G for a complete group G.

Theorem 2: Automorphisms take conjugacy classes to
conjugacy classes.

Proof: (h*gh)® = h™®P°h® so conjugates map to
conjugates.

Example 7: Sz is complete. The conjugacy classes of S;
are |, (xxx) and (xx).

Any automorphism must send (123) to one of two
possibilities and must send (12) to one of three
possibilities.

Since (123) and (12) generate S; |Aut(Ss)| < 6.
But Z(S;) is trivial and so |Inn(S3)| = 6.
Hence Aut(Ss) = Inn(S;).

Theorem 3: If 6 is an automorphism of S, that takes every
transposition to a transposition then 6 is an inner
automorphism.
Proof: Let 0, denote the inner automorphism x — b™*xb.
We prove, by induction on m, that for some b € S,,

00y fixes (12), (13), ..., (1 m).
Then, putting m = n we conclude that 66, = 1 and so

0=0," < Inn(G).
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We start the induction at m = 2.

Let (12)° = (h k) where h < k.
Ifh=1landk=2letb=1.
Ifh=1andk>2leth=(2k).
Ifh>1thenk>2. Letb=(1h)2Kk).

In each case (12)%% = (12).

Suppose m > 2 and the result holds for m. Let o = 60y
Since (12), (13), ..., (1 m) generate Sy, regarded as a
subgroup of S,, a restricted to Sy, is the identity.

Now (1 m+1)* = (h k) for some h, k where h <k.

If k < m then (h k) € Sy, and so (h k)* = (h k), in which
case (h k) = (1 m+1), a contradiction.

Hence k> m + 1.

(12 m+1)*=[(12)(1 m+1)]* = (12)(h k).

Since (12)(h k) must have order 3,

h=1or2.

If h=1letc=(m+1K).

Then 06,0, = 006y fixes (12), (13), ... (1 m) and (1 m+1).
Ifh=2letc=(12)(m+1k). Then 66,0, = 60y fixes (12),
(13), ... (1 m) and (1 m+1).

We are close to a proof that S, is always complete.
What is missing is showing that automorphisms take
transpositions to transpositions. By Theorem 2, the
simplest way to show this is to show that the number of
transpositions is different to the size of any other
conjugacy class in S,. This is true in all cases except
n = 6. In fact Sg is not complete. S; is also not complete,
but for a different reason. It does not have trivial centre.
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Theorem 4:
Sn is complete for all n exceptn =2 and n = 6.
Proof: Clearly S; is not complete since Z(S,) > 1.
| omit the proof that Sg has an outer automorphism.
Suppose n =2 and n= 6. Then Z(S,) = 1.
Let I'x denote the conjugacy class consisting of all
permutations in S, that are products of k disjoint
transpositions. For k <n/2,
nn-1)..(n—-2k+1)

2kk!
(n-2)(n-3)...(n—-2k+1)

= Il okT]
Since2k<n,(n-2)(n—-3)...(n—-2k+ 1) > (2k - 2)!
Now we can prove by induction that if k > 4 then
(2k — 2)! > k121 and so || > [Ty
(n=2)(n —3)(n —4)(n - 5)

3.2.2.2 '

I =

Now [[3| = |T7y].

5.4.3.2
Now n>6. Ifn>6then |5 > |1“1|.m > |7,

(n=2)(n-3)
2 .

2| = T4
6
Nown>4. Ifn>5then |y > |1“1|.Z > |7,

I
If n=4then |['y] = 1711 < |7y

So for k > 1, except for the case n = 6, k = 3, |y = T4
(Ifn=6then |5 = |1 = 15.)
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EXERCISES FOR CHAPTER 9

Exercise 1: For each of the following statements

determine whether it is true or false.

(1) If G is any group, the map x—gixg is an

automorphism of G for all g € G.

(2) The map 6:S3—S3 given by the following table is an

automorphism of Ss.

X I (123) | (132) | (12) | (23) | (13)
x° I (132) | (123) | (23) | (13) | (12

(3) The map x—x’ is an automorphism of Ss.

(4) Inn(Dy4p) = Cyox Co.

(5) Aut(Csy) is cyclic.

(6) Aut(Qs) = S..

(7) If n> 3, Sy is complete.

(8) D14 is complete.

Exercise 2: Let G = (A, B| Al°, B4 BA = A°B).
Show that the map induced by A®= A7, B®= A°B is an
automorphism of G.

Exercise 3: Let G = (A, B| Al°, B4 BA = A'B).

Show that the map induced by A°= AB, B®= B is not an
automorphism of G.
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SOLUTIONS FOR CHAPTER 9

Exercise 1:

(1) TRUE

(2) FALSE: [(12)(13)]f = (123)" = (132) while
(12)7(13) = (23)(12) = (123).

(3) TRUE: This is the identity map in disguise.

(4) FALSE: Itis C; x Co.

(5) TRUE: AUt(Cez) = Zez# = Zz# X Zgl# ~1 x C30 = C3o.

(6) TRUE

(7) FALSE: Sg is not complete.

(8) TRUE: Z(D14) =1 s0 Inn(D14) = D14 and

AUt(D14) =~ Dy, whence AUt(D14) = Inn(D14).

Exercise 2: (A% = (A1) =1,

(BG)Z — (ASB)Z = A°BA°B = A°AS>15R? = A8B?2 = B2,
Hence (B%)? = 1 but (B%)* = 1.

Finally (B%)(A% = ASBA’ = A>*?1B = A%B = A°B while
(AG)SBG - A21ASB - AZGB - AlOB.

Since (A7, A’B) = G, 0 is an automorphism of G.

Exercise 3:

(B®)(A®) = B(AB) = A~1B2 = A5B2 while
(A%1B° = (AB) !B = B-'A!B = AB2 = AB2,
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