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9. AUTOMORPHISMS 
 

§9.1 The Automorphism Group 
 An automorphism of a group G is an isomorphism 

from G to G. We write the image of g under the 

automorphism  as g and multiply automorphisms by 

defining g = (g).  Under this operation the set of all 

automorphisms of G forms a group Aut(G). 

 The conjugate of g under  h  is h−1gh and we denote 

it by gh. Conjugation by an element of the group is an 

automorphism, called an inner automorphism. Any 

automorphism that is not an inner one is called an outer 

automorphism. The inner automorphisms form a 

subgroup of Aut(G), denoted by Inn(G). 

 

Theorem 1: Inn(G)  G/Z(G). 

Proof: For h  G, let h denote conjugation by h. 

The map h → h is a homomorphism whose kernel is 

Z(G). Hence, by the First isomorphism Theorem 

Inn(G)  G/Z(G). 

 

Theorem 2: Aut(Cn)  ℤn
# and  Aut(C)  C2. 

Proof: Cn = A | An. 

If m is coprime to n then (m) = the automorphism x→xm 

is an isomorphism between ℤn
# and Aut(Cn). 

Aut(C)  C2 since the only automorphisms of the 

infinite cyclic group are x → x and x → x−1. 
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Example 1: Aut(C100)  ℤ100
#  C20  C2. 

                     Inn(C100)  1. 

 

Example 2: V4 = ,  | 2, 2,  = . 

If A is →, → and B is →, → then 

Aut(V4) = A, B | A3, B2, BA = A−1B. 

Inn(V4)  V4/Z(V4)  1. 

 

Theorem 3: Suppose n  3. Then Aut(D2n)  D2n and 

Inn(Dn)  D2n if n is odd and Cn  C2 if n is even. 

Proof: If A is →, → and B is →−1, → then 

Aut(D6) = A, B | An, B2, BA = A−1B  D2n. 

If n is even then Z(D2n) = An and 

Inn(D2n)  D2n/A
n  V4. 

If n is odd then Z(D2n) = 1 and Inn(D2n)  D2n. 

 

 Note that D2  C2 and so Aut(D2)  1 and 

D4  C2  C2 and so Aut(D4)  S3. 

 

Example 3: Aut(D6)  Inn(D6)  D6. 

 

 Recall that S3  D6 and so Aut(S3)  S3. What about 

the other symmetric groups? Clearly S1 and S2  C2 have 

trivial automorphism groups. What about Sn in general. Is 

Aut(Sn)  Sn for all n  3? 
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 The curious answer is “in all but one case”. If n = 

3, 4 or 5 then indeed Aut(Sn)  Sn. But Aut(S6) is twice as 

big as S6 itself. 

 

Example 4: If G is the direct sum of n copies of ℤp, where 

p is prime, then Aut(G)  GL(n, p) because an 

automorphism of G is a linear transformation when G is 

viewed as a vector space over ℤp. 

 

Example 5: Aut(Q8)  S4. 

Solution: (based on a solution by Karen E. Smith from 

the University of Michigan) 

Q8 = A, B | A4, B2 = A2, BA = A−1B. 

There are six elements of order 4: 

A, A−1, B, B−1, AB and (AB)−1. 

Label the six sides of cube with these labels so that 

elements and their inverses are on opposite faces. 

 

 An automorphism of Q8 corresponds to a rotation 

of the cube and so Aut(Q8) is isomorphic to the rotation 

group of the cube, which is S4. 

 

§9.2 Checking for Automorphisms 
 Suppose we have a finite group 

G = A, B, … | R1, R2, … 

Where the Ri are words in the generators. 

 Suppose we have a function  from the set of 

generators to G. This can be extended to a map from G to 
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G. We can check that  is an endomorphism by checking 

that the images of the generators: A, B, … satisfy the 

same relators as A, B, … do in the presentation for G. 

Finally to ensure that  is an automorphism we must 

check that G has the same order as G. 

 

Example 6: Q8 = A, B | A4, B2 = A2, B−1AB = A−1. 

Let A = B and B = AB. 

Now (A)4 = B4. 

(B)2 = (AB)2 = ABAB = B2 = (A)2. 

(B)−1AB = (AB)−1B(AB) 

                   = (B−1A−1B)AB 

                   = A2B = B−1 = (A)−1 

 Now clearly the group generated by B and AB has 

order 8, as does Q8 so  induces an automorphism. 

 

 This last step is necessary because  might have 

been merely an endomorphism. For example if we had 

chosen A = A2 and B =A, then all the relators would be 

satisfied by the corresponding images, yet the image of G 

under  would have had order 4. 
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§9.3 Complete Groups 
A group G is a complete group if: 

Z(G) = 1 and Aut(G) = Inn(G). 

By theorem 1, Aut(G)  G for a complete group G. 

 

Theorem 2: Automorphisms take conjugacy classes to 

conjugacy classes. 

Proof: (h−1gh) = h−gh so conjugates map to 

conjugates. 

 

Example 7: S3 is complete. The conjugacy classes of S3 

are I, () and (). 

Any automorphism must send (123) to one of two 

possibilities and must send (12) to one of three 

possibilities. 

 

Since (123) and (12) generate S3 |Aut(S3)|  6. 

But Z(S3) is trivial and so |Inn(S3)| = 6. 

Hence Aut(S3) = Inn(S3). 

 

Theorem 3: If  is an automorphism of Sn that takes every 

transposition to a transposition then  is an inner 

automorphism. 

Proof: Let b denote the inner automorphism x → b−1xb. 

We prove, by induction on m, that for some b  Sn, 

b fixes (12), (13), …, (1 m). 

Then, putting m = n we conclude that b = 1 and so 

 = b
−1  Inn(G). 
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We start the induction at m = 2. 

Let (12) = (h k) where h < k. 

If h = 1 and k = 2 let b = I. 

If h = 1 and k > 2 let b = (2 k). 

If h > 1 then k > 2.  Let b = (1 h)(2 k). 

In each case (12)b = (12). 

Suppose m  2 and the result holds for m. Let  = b. 

Since (12), (13), …, (1 m) generate Sm, regarded as a 

subgroup of Sn,  restricted to Sm is the identity. 

Now (1 m+1) = (h k) for some h, k where h < k. 

If k  m then (h k)  Sm and so (h k) = (h k), in which 

case (h k) = (1 m+1), a contradiction. 

Hence k  m + 1. 

(1 2  m+1) = [(12)(1 m+1)] = (12)(h k). 

Since (12)(h k) must have order 3, 

h = 1 or 2. 

If h = 1 let c = (m+1 k). 

Then bc = bc fixes (12), (13), … (1 m) and (1 m+1). 

If h = 2 let c = (12)(m+1 k).  Then bc = bc fixes (12), 

(13), … (1 m) and (1 m+1). 

 

 We are close to a proof that Sn is always complete. 

What is missing is showing that automorphisms take 

transpositions to transpositions. By Theorem 2, the 

simplest way to show this is to show that the number of 

transpositions is different to the size of any other 

conjugacy class in Sn. This is true in all cases except 

n = 6. In fact S6 is not complete. S2 is also not complete, 

but for a different reason. It does not have trivial centre. 
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Theorem 4: 

Sn is complete for all n except n = 2 and n = 6. 

Proof: Clearly S2 is not complete since Z(S2) > 1. 

I omit the proof that S6 has an outer automorphism. 

Suppose n  2 and n  6.  Then Z(Sn) = 1. 

Let k denote the conjugacy class consisting of all 

permutations in Sn that are products of k disjoint 

transpositions.  For k  n/2, 

|k| = 
n(n −1) ... (n − 2k + 1)

2kk!
  

       = |1|.
(n −2)(n − 3) ... (n − 2k + 1)

2k-1k!
  

Since 2k  n, (n − 2)(n − 3) … (n − 2k + 1)  (2k − 2)! 

Now we can prove by induction that if k  4 then 

(2k − 2)! > k!2k−1 and so |k| > |1|. 

Now |3| = |1|.
(n −2)(n − 3)(n − 4)(n − 5)

3.2.2.2
 . 

Now n  6.  If n > 6 then |3|  |1|.
5.4.3.2

3.2.2.2
  > |1|. 

|2| = |1|.
(n −2)(n − 3)

4
 . 

Now n  4.  If n  5 then |2|  |1|.
6

4
  > |1|.   

If n = 4 then |2| = 
|1|

2
  < |1|. 

So for k > 1, except for the case n = 6, k = 3, |k|  |1|. 

(If n = 6 then |3| = |1| = 15.) 
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EXERCISES FOR CHAPTER 9 
 

Exercise 1: For each of the following statements 

determine whether it is true or false. 

(1) If G is any group, the map x→g−1xg is an 

automorphism of G for all g  G. 

(2) The map :S3→S3 given by the following table is an 

automorphism of S3. 

x I (123) (132) (12) (23) (13) 

x I (132) (123) (23) (13) (12) 

(3) The map x→x7 is an automorphism of S3. 

(4) Inn(D40)  C10
  C2. 

(5) Aut(C62) is cyclic. 

(6) Aut(Q8)  S4. 

(7) If n  3, Sn is complete. 

(8) D14 is complete. 

 

Exercise 2: Let G = A, B | A16, B4, BA = A3B. 

Show that the map induced by A = A7, B = A5B is an 

automorphism of G. 

 

Exercise 3: Let G = A, B | A16, B4, BA = A−1B. 

Show that the map induced by A = AB, B = B is not an 

automorphism of G. 
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SOLUTIONS FOR CHAPTER 9 
 

Exercise 1: 

(1) TRUE 

(2) FALSE: [(12)(13)]f = (123)f = (132) while 

     (12)f(13)f = (23)(12) = (123). 

(3) TRUE: This is the identity map in disguise. 

(4) FALSE: It is C2  C2. 

(5) TRUE: Aut(C62)  ℤ62
#  ℤ2

#  ℤ31
#  1  C30  C30. 

(6) TRUE 

(7) FALSE: S6 is not complete. 

(8) TRUE: Z(D14) = 1 so Inn(D14)  D14 and 

Aut(D14)  D14 whence Aut(D14) = Inn(D14). 

 

Exercise 2: (A)16 = (A16) = 1. 

(B)2 = (A5B)2 = A5BA5B = A5A5.15B2 = A80B2 = B2. 

Hence (B)2  1 but (B)4 = 1. 

Finally (B)(A) = A5BA7 = A5+21B = A26B = A10B while 

(A)3B = A21A5B = A26B = A10B. 

Since A7, A5B = G,  is an automorphism of G. 

 

Exercise 3: 

(B)(A) = B(AB) = A−1B2 = A15B2 while 

(A)−1B = (AB)−1B = B−1A−1B = AB−2 = AB2. 
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